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it allows composition and simultaneous substitutions (�� does not), and it iscompatible with the extensional �-rule (�* is not).The composition operator was introduced in �� to solve a critical pair, andso, to gain local conuence. Composition of substitutions introduces simultane-ous substitutions that happens to be useful for several purposes. For example,the modeling of closures of an abstract machine [12] or the pruning of searchspace in uni�cation algorithms [4, 5, 19]. Also, this feature improves the substi-tution mechanism by allowing parallel substitutions of variables. An interestingdiscussion about composition of substitutions in �-calculus can be found in [29].However, composition of substitutions and simultaneous substitutions areresponsible of the following non-left-linear rule in ��: 1[S] � (" �S) (SCons)- S.Informally, if we interpret S as a list, 1 as the head function and " as the tailfunction, then this rule corresponds to the surjective-pairing rule. The (SCons)-rule is impractical for many reasons. We have shown in [27] that �� may losesthe subject reduction property in a dependent type system due to (SCons).But also, independently, Nadathur [30] has remarked that this non-left-linearrule is di�cult to handle in implementations. In fact, he shows that (SCons) isadmissible in �� when we consider semi-open terms and the following scheme ofrule: 1["n] � "n+1 (SCons)- "n, where "n is a notation for n-timesz }| {" � : : : � ".Following this idea, we propose a calculus of explicit substitutions that enjoysthe same general features as ��, i.e. a simple and �nitary �rst-order presentation,conuent on expressions with meta-variables of terms and weakly normalizingon typed terms. But, in contrast to ��, the new calculus does not have the(SCons)-rule which raises technical problems in some frameworks.The rest of the paper is organized as follows. In Section 2 we present the�L-calculus. The conuence property of �L is show in Section 3. In Section4 we study the simply-typed version of �L. In Section 5 we prove that �L isweakly normalizing on typed expressions. Last section summarizes the maincontributions of this work.2 �L-CalculusThe �nitary presentation of the scheme suggested by Nadathur is gained by theintroduction of a sort to represent natural numbers and with an adequate set ofrewrite rules to compute with them.Well formed expressions in �L are de�ned by the following grammar:2Naturals n ::= 0 j Suc(n)Terms M;N ::= 1 j �M j (M N) jM [S]Substitutions S; T ::= "n jM � S j S �T2 In previous manuscripts ([28, 27]) the name of the calculus was ��, but we havechanged to �L in order to avoid confusion with the ��-calculus proposed by Lescannein [20].



The �L-calculus is given by the rewrite system in Fig. 1.(�MN) �! M [N � "0] (Beta)(�M)[S] �! �M [1 � (S � "Suc(0))] (Lambda)(M N)[S] �! M [S] N [S] (App)M [S][T ] �! M [S �T ] (Clos)1[M � S] �! M (VarCons)M ["0] �! M (Id)(M � S) �T �! M [T ] � (S �T ) (Map)"0 �S �! S (IdS)"Suc(n) � (M � S) �! "n �S (ShiftCons)"Suc(n) � "m �! "n � "Suc(m) (ShiftShift)1 � "Suc(0) �! "0 (Shift0)1["n] � "Suc(n) �! "n (ShiftS)Fig. 1. The rewrite system �LA �rst remark is that �L gathers, in its syntax, some notations that arefrequently used to speak informally of ��. For example, the substitutions id andn+1z }| {" � : : : � " of ��, correspond respectively to "0 and "Suc(n) in �L. In the sameway, the de Bruijn's indices 1 and n+ 1 are represented respectively by 1 and1["n] in �L. Thus, the scheme of rule suggested by Nadathur can be written asa �rst-order (and �nitary) rule.The sub-system L is obtained by dropping (Beta) from �L.Proposition 1. L is terminating.Proof. In [36] this property has been proved by using the semantic labellingmethod (cf. [35]). An alternative proof is proposed in [28]. utThe rewrite system L is not conuent, not even locally conuent, on openexpressions. We can check mechanically, for example using the RRL system [16],that L has the following critical pairs:{ (Id-Clos). M [S] �L+ M [S]["0] L+- M [S � "0].{ (Clos-Clos). M [(S �T ) �T 0] �L+ M [S][T ][T 0] L+- M [S � (T �T 0)].{ (Shift0-Map). S �L+ (1 � "Suc(0)) �S L- 1[S] � ("Suc(0) �S).{ (ShiftS-Map). "n �S �L (1["n] � "Suc(n)) �S L+- 1["n �S] �("Suc(n) �S).



{ (Lambda-Clos). �M [1 � ((S � "Suc(0)) � (1 � (T � "Suc(0))))] �L+(�M)[S][T ] L+- �M [1 � ((S �T ) � "Suc(0))].If we consider (Beta), then we have additionally the following critical pairwith (App):M [N [S] � S] ��L+ (�M N)[S] �L+- M [N [S] � ((S � "Suc(0)) � (N � "0))]The following lemma proves that these critical pairs are joinable on the setof expressions that contain meta-variables of terms, but no meta-variables ofsubstitutions or naturals, i.e. on semi-open expressions. Due to space limitation,we only sketch the proof of the main properties. For detailed proofs, see theextended version of this paper [28].Proposition 2. The critical pairs of �L are L-joinable on semi-open expres-sions.Proof. For any any critical pair we reduce substitutions to L-normal forms. Next,we proceed by structural induction on L-normal substitutions. utIn the general case, local ground conuence cannot be mechanically veri�ed[15]. However, the Critical Pair's lemma [13], i.e. a rewrite system is conuentif its critical pairs are joinable, holds also for ground expressions (cf. [15]): arewrite system is ground conuent if its critical pairs are ground joinable. TheCritical Pair's Lemma is not true for general many-sorted systems, but in [33]it has been proved that it holds if for every rule l - r, the sort of l and thesort of r are the same.Proposition 3. L is locally conuent on semi-open expressions.Proof. Notice that the �L-calculus has three sorts of expressions: Naturals, Sub-stitutions and Terms, but only meta-variables of terms are admitted. We mustextend the Critical Pair's lemma to semi-open expressions. We check that L isa sort compatible system, i.e. terms reduce to terms and substitutions reduceto substitutions. Now, the proof follows straightforwardly the proofs in [33, 15].Notice that if two expressions are joinable, then they are in particular joinablein semi-open expressions. Hence, it su�ces to concentrate on those critical pairsthat are not joinable on open terms, and we conclude with Proposition 2. utTheorem4. L is conuent on semi-open expressions.Proof. By Proposition 1, L is terminating and by Proposition 3, L is locallyconuent, so by Newman's Lemma, L is conuent. utCorollary 5. L-normal forms of semi-open expressions always exist, and theyare unique. We denote by x#L the L-normal form of x.Remark: The non-linearity of �L due to (ShiftS) is only apparent since the termwith a double occurrence in this rule can be considered as a constant in the setof semi-open expressions. In particular, there are not reduction rules for naturalnumbers.



3 ConuenceAn useful technique to prove conuence in calculi of explicit substitutions is theinterpretation method [11, 17]. Although the interpretation method can be usedto prove conuence on terms with meta-variables (cf. [32]), we prefer to use atechnique that was coined in [34]: the Yokouchi-Hikita's Lemma. This lemmaseems to be suitable for left-linear calculi of explicit substitutions [3, 31, 25].Lemma6 Yokouchi-Hikita's Lemma. Let R and S be two relations de�nedon a set X such that: 1. R is conuent and terminating, 2. S is strongly conuentand 3. S and R commute in the following way, for any x; y; z 2 X, if x R- yand x S- z, then there exists w 2 X such that y R�SR�- w and z R�- w, i.e.the following diagram holds: x	���R @@@SRy z.......R�SR�R 	.......R�wThen the relation R�SR� is conuent.Proof. See [3]. utWe take the set of semi-open expressions as X , L as R and Bk as S, whereBk is the parallelization of (Beta) de�ned by:(Rek)x �! x M �! N (Lambdak)�M �! �NM �!M 0 N �! N 0 (Appk)M N �!M 0 N 0 M �! N S �! T (Closk)M [S] �! N [T ]M �! N S �! T (Consk)M � S �! N � T S �! S0 T �! T 0 (Compk)S �T �! S0 �T 0M �!M 0 N �! N 0 (Betak)(�M N) �!M 0[N 0 � "0]Proposition 7. On semi-open expressions, L and Bk satisfy the conditions ofLemma 6. Therefore, L�BkL� is conuent.Proof. (1) By Proposition 1 and Theorem 4, L is terminating and conuent onsemi-open expressions. (2) Bk is strongly conuent, since (Beta) by itself is aleft linear system with no critical pairs (cf. [13]). (3) Assume that an arbitrary



expression x reduces in one L-step to y, and in one Bk-step to z. We prove, byinduction on the depth of the L-redex reduced in x, that there exists w suchthat y L�BkL�- w and z L�- w. At the base case x is a L-redex:{ (App). There are two cases:� x = (M N)[S] (App)- (M [S] N [S]) = y and (M N)[S] Bk-(M 0 N 0)[S0] = z, with M Bk- M 0, N Bk- N 0 and S Bk- S0. Byde�nition of Bk, (M [S] N [S]) Bk- (M 0[S0] N 0[S0]) = w. But also,(M 0 N 0)[S0] (App)- (M 0[S0] N 0[S0]) = w.� x = (�M N)[S] (App)- ((�M)[S] N [S]) = y and (�M N)[S] Bk-M 0[N 0 � "0][S0] = z, with M Bk- M 0, N Bk- N 0 and S Bk- S0. LetŜ0 the L-normal form of S0 (Corollary 5). Then, y = ((�M)[S] N [S])(Lambda)- (�M [1 � (S � "Suc(0))] N [S]) Bk-M 0[1 � (S0 � "Suc(0))][N 0[S0] � "0] L�- M 0[N 0[Ŝ0] � Ŝ0]. But also,M 0[N 0 � "0][S0] L�- M 0[N 0[Ŝ0] � Ŝ0]. This case is the only interesting one.{ (Lambda). x = (�M)[S] (Lambda)- �M [1 � (S � "Suc(0))] = y and x =(�M)[S] Bk- (�M 0)[S0] = z, with M Bk- M 0 and S Bk- S0. By de�ni-tion of Bk, �M [1 � (S � "Suc(0))] Bk- �M 0[1 � (S0 � "Suc(0))] = w. But also,(�M 0)[S0] (Lambda)- �M 0[1 � (S0 � "Suc(0))] = w.{ The other cases are similar to the previous one.At the induction step we solve with the induction hypothesis. utTheorem8 Conuence. �L is conuent on semi-open expressions.Proof. Notice that �L � L�BkL� � �L�. If x �L�- y and x �L�- z, then byProposition 7, there exists w such that y (L�BkL�)�- w and z (L�BkL�)�- w. So,y �L�- w and z �L�- w. ut4 The simply-typed versionWe consider a simple type theory, where types are generated from a set of basictypes a; b; : : : and the arrow (!) type constructor. The simple type system wepropose is inspired in that of �� [1].Like the simply-typed �-calculus in de Bruijn's notation, typing contexts(of free variables) are structured as lists of types. The grammar of types andcontexts is: Types A;B ::= a; b; : : : j A! BContexts � ::= nil j A:�



Typed terms di�er from untyped ones only in abstraction expressions. Weprefer a Church style notation where types of binder variables appear explicitlyin the syntax. TermsM;N ::= : : : j �A:M j : : :The �L-calculus is modi�ed according to this new syntax of abstractions. How-ever, it is not di�cult to see that properties of Section 2 and 3 are preserved.Typing assertions have one of the following forms:{ � `M : A, the term M has type A in the context � .{ � ` S . �, the substitution S has type � in the context � .(Var)A:� ` 1 : A A:� `M : B (Abs)� ` �A:M : A! B� `M : A! B � ` N : A (Appl)� ` (M N) : B � ` S . � � `M : A (Clos)� `M [S] : A(Id)� ` "0 . � � ` "n . � (Shift)A:� ` "Suc(n) . �� ` S . �0 �0 ` T . � (Comp)� ` T �S . � � `M : A � ` S . � (Cons)� `M � S . A:�Each meta-variable is typed in a unique context by a unique type (c.f. [4, 22]):(MetaX)�X ` X : AXExample 1.1. This is a type derivation of A:nil ` �B :(X 1["Suc(0)]) : B ! C.(MetaX)B:A:nil ` X : A! C (Id)A:nil ` "0 . A:nil (Shift)B:A:nil ` "Suc(0) . A:nil (Var)A:nil ` 1 : A (Clos)B:A:nil ` 1["Suc(0)] : A (Appl)B:A:nil ` (X 1["Suc(0)]) : C (Abs)A:nil ` �B :(X 1["Suc(0)]) : B ! C2. The term (�A:X X) is not well-typed in any context. Notice that in thefollowing derivation: : : :A:� ` X : A (Abs)� ` �A:X : A! A : : :� ` X : A (Appl)� ` (�A:X X) : A! Athe meta-variable X must be typed in two di�erent contexts: A:� and � .



3. Let X be a meta-variable such that � ` X : A. In this example, we takethe index 2 as a notation for 1["Suc(0)]. We have the valid typing judgment:� ` (�A:�B :2 X) : B ! A. We obtain by �L-reduction:(�A:�B :2 X) (Beta)- (�B :2)[X � "0] �L�- �B :X ["Suc(0)]Also, we can verify that � ` �B :X ["Suc(0)] : B ! A.Notice that the type system is syntax directed, i.e. there is one rule for eachconstructor of terms and substitutions. Using this fact, we can prove easily thatfor a given context, the type of an expression is unique (type uniqueness' lemma).Lemma9 Type Uniqueness.1. If �1 `M : A1 and �2 `M : A2, then A1 = A2.2. If �1 ` S . �1 and �2 ` S . �2, then �1 = �2.Proof. We proceed by simultaneous structural induction on M and S. utExample 1(3) suggests that typing is preserved under �L-reductions. Thisproperty is known as subject reduction.Theorem10 Subject Reduction. Let x and y be such that x �L�- y, then{ if x is a term and � ` x : A, then � ` y : A, and{ if x is a substitution and � ` x . �, then � ` y . �.Proof. We show that typing is preserved for one-step reductions (i.e. �L- ), andthen it is also for its reexive and transitive closure (i.e. �L�- ). Let x �L- y bea one-step reduction, we proceed by induction on the depth of the redex reducedin x. At the initial case x is reduced at the top level, and we prove that every rulepreserves typing. At the induction step we resolve with induction hypothesis. utIn the �L-system, just as in ��, instantiation of meta-variables and typ-ing commute. This property guarantees the soundness of instantiation of meta-variables in the uni�cation algorithm [4, 5, 19], or in the re�nements steps ofincomplete proofs [26].Lemma11 Instantiation Soundness. Let N be a term such that�X ` N : AX , where �X and Ax are respectively the unique context and uniquetype of a meta-variable X. Then,1. if � `M : B, then � `MfX 7! Ng : B, and2. if � ` S . �0, then � ` SfX 7! Ng . �0,where xfX 7! Ng is a notation for the remplacement of meta-variable X by Nin the expression x without take care of possible capture of free variables.Proof. We reason by induction on type derivation. ut



5 Weak NormalizationStrong normalization on typed terms does not hold for �L. In fact, Melli�es showsin [23] that his counter-example for preservation of strong normalization in the��-calculus [24], can be adapted to systems without associativity of composition(as �L), and even if we give priority to the rules (ShiftCons) and (VarCons).In �-calculi of explicit substitutions that implement one-step semantic of �-reduction |i.e. if M;N are pure terms3 and M �- N , then M (Beta)- M 0whereN is the substitution-normal form ofM 0| as ��, �* and �L, weak normal-ization on typed pure terms follows directly from strong normalization of typed�-calculus. When we consider semi-open expressions, it arises an additional di�-culty: the presence of meta-variables and substitutions on normal forms. Noticethat the set of normal forms of semi-open expressions is not include in the setof pure terms, e.g. the term X ["Suc(0)] is a �L-normal form, but it is not pure.For the simply-typed version of �� (with meta-variables), Goubault-Larreq[10] proposes a clever translation from ��-terms into a family of �-terms. Inthis approach, weak normalization is deduced from strong normalization of thesimply-typed �-calculus. That proof is adapted to a second-order type systemwithout dependent types in [9].In this section, we prove that �L is weakly normalizing on typed expres-sions. In particular, we show that the reduction of (Beta) followed by a L-normalization is strongly normalizing on typed expressions. The proof we pro-vide can be adapted to �� in a straightforward way. This gives an alternativeproof to that developed by Goubault-Larreq. Our proof is based on that pro-posed by Geuvers for the Calculus of Construction [7]. The technique that weuse is extended to a dependent type system with explicit substitutions in [27].The general idea of the proof is to give an interpretation for each type into aset of terms satisfying certain closure properties (these sets are called saturatedsets). Terms are also interpreted by functions called valuations. In our proof,valuations are just particular explicit substitutions. We prove that if M is aL-normal form and � ` M : A, then for any valuation S of M , the substitu-tion normal form of M [S], i.e. (M [S])#L, is included in the interpretation ofA, denoted [[A]]. The identity substitution is a valuation of any term, thus, inparticular, (M ["0])#L = M 2 [[A]]. The closure properties of [[A]] are su�cientto conclude that M is weakly normalizing.We de�ne NFL as the set that contains all the L-normal forms of semi-openexpressions.De�nition 12. Let x; y 2 NFL, we say that x �L-converts to y, noted byx �L- y, if and only if x (Beta)- w and y = w#L.We denote by SN the set of �L-strongly normalizing expressions of NFL.De�nition 13. Let M be in NFL, M is neutral if it does not have the form�A:N . The set of neutral terms is denoted by NT .3 A pure term is a ground term which does not contain substitutions.



De�nition 14. A set of terms � � NFL is saturated if1. � � SN .2. If M 2 � and M �L- M 0, then M 0 2 �.3. If M 2 NT , and whenever we reduce a �L-redex of M we obtain a termM 0 2 �, then M 2 �.The set of saturated sets is denoted by SAT.From Def. 14(3):Remark 15. Let M 2 NT such that M is a �L-normal form. For any � 2 SAT,M 2 �.Lemma16. SN 2 SAT.Proof. We verify easily the following conditions.1. SN � SN .2. If M 2 SN and M �L- M 0, then M 0 2 SN .3. If M 2 NT , and whenever we reduce a �L-redex of M we obtain a termM 0 2 SN , then M 2 SN . utDe�nition 17. Let �;�0 2 SAT, we de�ne the set�! �0 = fM 2 NFL j 8N 2 � : (M N) 2 �0gLemma18. SAT is closed under function spaces, i.e. if �;�0 2 SAT, then�! �0 2 SAT.Proof. We show:1. �! �0 � SN .Let M 2 � ! �0, by Def. 17 and Def. 14(1), (M N) 2 �0 � SN for allN 2 �. Thus, M 2 SN .2. If M 2 �! �0 and M �L- M 0, then M 0 2 �! �0.Let N 2 �, we show that (M 0 N) 2 �0. By hypothesis, (M N) �L- (M 0 N),and (M N) 2 �0. Thus, by Def. 14(2), (M 0 N) 2 �0.3. If M 2 NT , and whenever we reduce a �L-redex of M we obtain a termM 0 2 �! �0, then M 2 �! �0.Let N 2 �, we show that (M N) 2 �0. Since (M N) 2 NT , then byDef. 14(3), it su�ces to prove that if (M N) �L- M 00, then M 00 2 �0. Wehave N 2 � � SN , so we can reason by induction on �(N)4. In one step(M N) �L-reduces to:4 \If x is strongly normalizing, �(x) is a number which bounds the length of everynormalization sequence beginning with x" [8].



{ (M 0 N), with M �L- M 0. By hypothesis, M 0 2 � ! �0 and N 2 �,thus (M 0 N) 2 �0.{ (M N 0), with N �L- N 0. By Def. 14(2), N 0 2 �, and �(N 0) < �(N), soby induction hypothesis, (M N 0) 2 �0.{ There is no other possibility since M 2 NT . utDe�nition 19. The type interpretation function is de�ned inductively on typesas follows: [[�]] = SN if � is a basic type[[A! B]] = [[A]] ! [[B]]Remark 20. By Lemma 18, for any type A, [[A]] 2 SAT.Lemma21. Let M;S 2 NFL, for any substitution T1. if M �L- M 0, then (M [T ])#L �L- (M 0[T ])#L, and2. if S �L- S0, then (S �T )#L �L- (S0[T ])#L.Proof. We reason by simultaneous structural induction on M and S. utCorollary 22. Let M;S 2 NFL, for any substitution T1. if (M [T ])#L 2 SN , then M 2 SN , and2. if (S �T )#L 2 SN , then S 2 SN .Lemma23. Let M 2 NFL, if for all N 2 [[A]], (M [N � "0])#L 2 [[B]], then�A:M 2 [[A]] ! [[B]].Proof. Let N 2 [[A]], we show that (�A:M N) 2 [[B]]. Since (�A:M N) 2 NT ,it su�ces to prove that if (�A:M N) �L- M 00, then M 00 2 [[B]]. We have(M [N � "0])#L 2 [[B]] � SN , so by Corollary 22, M 2 SN ; and by hypothesis,N 2 [[A]] � SN . Thus, we can reason by induction on �(M)+ �(N). In one step(�A:M N) �L-reduces to:{ (M [N � "0])#L. By hypothesis, (M [N � "0])#L 2 [[B]].{ (�A:M 0 N), with M �L- M 0. By Lemma 21, (M [N � "0])#L �L-(M 0[N � "0])#L. Since, (M [N � "0])#L 2 [[B]], we have by Def. 14(2),(M 0[N � "0])#L 2 [[B]]. But also, �(M 0) < �(M), so by induction hypothesis,(�A:M 0 N) 2 [[B]].{ (�A:M N 0), with N �L- N 0. By Def. 14(2), N 0 2 [[A]], so by hypothesis,(M [N 0 � "0])#L 2 [[B]]. But also, �(N 0) < �(N), so by induction hypothesis,(�A:M N 0) 2 [[B]]. utLemma24. For any � 2 SAT, substitution S 2 SN , and meta-variable X,(X [S])#L 2 �.



Proof. Let M = (X [S])#L, we reason by induction on �(S). M is neutral, thenby Def. 14(3), it su�ces to consider the reductions of M .{ M �L- X . By Remark 15, X 2 �.{ M �L- X [S0], with S �L- S0. By hypothesis, S0 2 SN and �(S0) < �(S),so by induction hypothesis, (X [S0])#L = X [S0] 2 �.In every case, M �L-reduces into terms in �, thus by Def. 14(3), (X [S])#L 2 �.utDe�nition 25. The valuations of � , noted by [[� ]], is a set of substitutions inNFL de�ned inductively on � as follows:[[nil]] = f"n j for any natural ng[[A:� 0]] = [[nil]] [ fM � S 2 NFL jM 2 [[A]]; S 2 [[� 0]]gNotice that if M 2 [[A]] and S 2 [[� ]], then M � S is not necessarily in[[A:� ]] (since M �S may not be in NFL). However, we verify easily the followingproperty.Remark 26. If M 2 [[A]] and S 2 [[� ]], then (M � S)#L 2 [[A:� ]].Lemma27. For any � , [[� ]] � SN .Proof. We prove by structural induction on S that if S 2 [[� ]], then S 2 SN .{ S ="n. In this case S is a �L-normal form, then the conclusion is trivial.{ S = M � T . By Def. 25, � = A:� 0, T 2 [[� 0]] and M 2 [[A]] � SN . Byinduction hypothesis, T 2 SN . We prove by induction on �(M)+ �(T ) thatM � T 2 SN (notice that M � T 2 NFL).De�nition 28. Let M;S 2 NFL, we de�ne1. � satis�es that M is of type A, noted by � j= M : A, if and only if(M [T ])#L 2 [[A]] for any T 2 [[� ]].2. � satis�es that S is of type �, noted by � j= S . �, if and only if (S �T )#L 2[[�]] for any T 2 [[� ]].Proposition 29 Soundness of j=.1. If � `M : A, then � j=M : A,2. If � ` S . �, then � j= S . �.Proof. By simultaneous induction on derivations � ` M : A and � ` S . �.The last applied rule is:{ (Var). In this case,M = 1 and � = A:� 0. Let T 2 [[� ]], there are three cases:� T ="0. Therefore, (1[T ])#L = 1. But also, 1 is a neutral �L-normal form,then by Remark 15, 1 2 [[A]].



� T ="Suc(n). Therefore, (1[T ])#L = 1["Suc(n)]. But also, 1["Suc(n)] is aneutral �L-normal form, then by Remark 15, 1["Suc(n)] 2 [[A]].� T = M 0 � S0. Therefore, (1[T ])#L = M 0. By Def. 25 and hypothesis� = A:� 0, we have that M 2 [[A]].{ (Clos). In this case M =M 0[S0], � ` S . �, and � `M 0 : A. We reason bycases analysis on M 0 and S0.� M 0 = 1 and S0 ="Suc(n). Let T 2 [[� ]], by induction hypothesis,("Suc(n) �T )#L 2 [[�]]. Notice that (1["Suc(n)][T ])#L = (1["Suc(n) �T ])#L= (1[("Suc(n) �T )#L])#L. By induction hypothesis,(1[("Suc(n) �T )#L])#L 2 [[A]], and thus, (1["Suc(n)][T ])#L 2 [[A]].� M = X (X is a meta-variable). Let T 2 [[� ]], by induction hypoth-esis, (S0 �T )#L 2 [[�]]. Notice that (X [S0][T ])#L = (X [S0 �T ])#L =(X [(S0 �T )#L])#L. By induction hypothesis, (X [(S0 �T )#L])#L 2 [[A]],and thus, (X [S0][T ])#L 2 [[A]].{ (MetaX ). In this case M = X (X is a meta-variable). Let T 2 [[� ]], thereare two cases:� T ="0. Therefore, (X [T ])#L = X . But also, X is a neutral �L-normalform, then by Remark 15, X 2 [[A]].� T 6="0. Therefore, (X [T ])#L = X [T ]. By Lemma 27, T 2 SN , then byLemma 24, X [T ] 2 [[A]].{ (Abs). In this case M = �A1 :M1, A1:� ` M1 : B1, and A = A1 ! B1. ByDef. 19, [[A]] = [[A1 ! B1]] = [[A1]] ! [[B1]]. Let T 2 [[� ]] and *(T ) be anotation for 1 � (T � "Suc(0)). We have ((�A1 :M1)[T ])#L = �A1 :(M1[*(T )])#L.By Lemma 23, it su�ces to prove that for any N 2 [[A1]],((M1[*(T )])#L[N � "0])#L 2 [[B1]]. By hypothesis and Remark 26,(N � T )#L 2 [[A1:� ]], then by induction hypothesis, (M [(N � T )#L])#L =((M1[*(T )])#L[N � "0])#L 2 [[B1]].{ (App). In this case M = (M1 N1), � ` M1 : B ! A and � ` N1 : B.Let T 2 [[� ]], so we have, ((M1 N1)[T ])#L = ((M1[T ])#L (N1[T ])#L). Byinduction hypothesis, (M1[T ])#L 2 [[B ! A]] = [[B]] ! [[A]] and (N1[T ])#L 2[[B]]. Hence, ((M1 N1)[T ])#L 2 [[A]].{ (Id), (Shift). In this case S ="n. We prove by structural induction on n andT that if T 2 [[� ]] and � ` "n . �, then ("n �T )#L 2 [[�]].{ (Cons). In this case S =M 0�S0, � `M 0 : A0, � ` S0 . �0 and A0:�0 = �. LetT 2 [[� ]], so we have, (S �T )#L = ((M 0[T ])#L � (S0 �T )#L)#L. By inductionhypothesis, (M 0[T ])#L 2 [[A0]] and (S0 �T )#L 2 [[�0]]. From Remark 26 weconclude that ((M 0[T ])#L � (S0 �T )#L)#L 2 [[�]]. utTheorem30. Let M;S be expressions in NFL.1. If � `M : A, then M 2 SN .2. If � ` S . �, then S 2 SN .Proof. By Def. 25, "02 [[� ]]. Hence,1. By Proposition 29, (M ["0])#L =M 2 [[A]], and by Def. 14, [[A]] � SN .



2. By Proposition 29, (S � "0)#L = S 2 [[�]], and by Lemma 27, [[�]] � SN . utTheorem31. If � ` M : A and � ` S . �, then M and S are weaklynormalizing, and thus M and S have �L-normal forms.Proof. Let N = M#L and T = S#L, the subject reduction property (Theo-rem 10) says that typing is preserved under reductions, hence � ` N : A and� ` T . �. Therefore, by Theorem 30, N and T are both in SN . Finally, remarkthat a �L-normal form in NFL is a �L-normal form too. ut6 ConclusionsWe have proposed a variant of ��, namely �L. This calculus enjoys the samegeneral properties of ��:{ a simple and �nitary �rst-order rewrite system,{ conuent on terms with meta-variables,{ weakly terminating on typed terms and{ with composition of substitutions and simultaneous substitutions.However, in contrast to ��, �L does not have the (SCons)-rule and so, it isleft-linear in the sort of terms and substitutions.Although �L was designed to allow meta-variables, it happens to be usefulin the same framework where �� is. In particular both calculi share the samedescription of normal forms. For example, the higher-order uni�cation algorithmvia explicit substitutions proposed in [4] can be expressed in �L, almost withoutmodi�cations. Moreover, since �L does not have the surjective pairing rule, itis useful for applications where this feature of �� pose technical problems, forinstance higher-order equational uni�cation via explicit substitutions [19], ordependent type systems [27].Another left-linear variant of �� is the �*-calculus [3]. The system �* is fullyconuent on open terms, not only with meta-variables of terms but also withmeta-variables of substitutions. However, �* is incompatible with the extensionalrule (�) due to the fact that substitutions id and 1�" are not �*-convertible. A keypoint in �L is the preservation of this extensional equivalence. The extensionalversion of �L-calculus is conuent on ground terms as shown in [18], and weconjecture that it is also on semi-open expressions.The �L-calculus is extended to dependent types in [27] and work is in progressto use this calculus in a formulation of the Calculus of Inductive Constructionswith explicit substitutions and open expressions.Acknowledgments Many thanks to all persons contributing to this work, in par-ticular to Gilles Dowek, Delia Kesner, Benjamin Werner, Bruno Barras, Gopalan Na-dathur and the anonymous referees for their useful remarks and suggestions on thesubject of this paper. The author is very grateful with Thomas Arts and Hans Zan-tema for their help with Proposition 1, in particular Hans Zantema send to me a proofof this proposition in a personal communication [36].
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